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7. MOBIUS INVERTION FORMULA

To read:
[5] Chapter 2.1.

Definition 7.1. Suppose that a positive integer n has the prime factorization
n :pil pf’r

We define the Mobius function u(n) as:

1 for n=1,
p(n) =< 0 if some e; > 1,
(—1)ifer=...=e = 1.

Lemma 7.2. Forn € Z>1 we have
1 if n=1,
> nld) = {O .
d|n '
Here the summation is taken over all positive divisors on n.

Proof. First consider the case n = 1. It follows immediately from the definition
S pld) = (1) = 1.
d|1

Next, suppose that n > 1 and it has the prime decomposition n = p{' ---pS*. Set n* :=p; - - - p,.
If d | n and d { n* then d has a prime divisor of multiplicity bigger then 1 and therefore u(d) = 0.

Hence, we have
S nld) = 3 uld).

dn d|n*
Now we can easily compute

;Md)‘l(q)*(;)(;)+..._(11)r_0.

This finishes the proof. O
Theorem 7.3. (Mobius inversion formula) Let functions f,g: Z>1 — R be such that

fn)=>"g(d).
d|n
Then
g(n) =>_u(d) f(n/d).

dln
Proof. We have
f(n/d) = Z for all d | n.

d'[(n/d)g(d")

> uld) fnfd) =D pld) > g(d).

dn d|n d'|(n/d)

Therefore
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Let n = dd'ny. For a fixed d’, the value of d runs over all positive divisors of n/d’. Hence we get
Youd) Do ogd)=> g(d) > uld).
dln d'|(n/d) d'|n d|(n/d")
We apply the previous lemma to the sum -,/ 1(d) and obtain
> gld) D uld) =g(n).
d'|n d|(n/d")
This finishes the proof. [
7.1. Identities with Euler’s totient function.
Exercise 6. Show that for all n € Z>; we have
n=> ¢(d).
dln
Hint: Let ®,, be the set all elements in [n] coprime to n:
®,, :={m € [n] | m is coprime to n}.

Show that [n] is the disjoint union of sets (n/d) - ®4 where d runs over all divisors of n:

=, (/D) .

Exercise 7. Show that ¢(n) =n3)_y, @.

7.2. Number of cyclic sequences.

Definition 7.4. Let A be a set. A linear sequence of length n on an A is a sequence of the form
(a1,...,ap), ar € Afork=1,...n.

In other words, a linear sequence is a function a : [n] — A.

The number of linear sequences of length n on an alphabet of size r is r".
Consider the following equivalence relation ~ on the set of linear sequences:

(a1y..,an) ~ (a1, ..., an)
and
(a1y.,apn) ~ (g, Qgst1y- -y a1, 05-1), k=2,...m.
In other words, two linear sequences are equivalent if one of them can be obtained from another
by a cyclic shift.

Ezxzample. Linear sequences of length 3 on the alphabet {a,b}:
(a,a,a)
(a,a,b)
(a,b,a)
(a,b,b)
(b,a,a)
(b,a,b)
(b,b,a)
(b,0,0).
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Cyclic sequences of length 3 on the alphabet {a,b}:
(a,a,a)
(a,a,b) ~ (a,b,a) ~ (b,a,a)
(a,b,b) ~ (b,b,a) ~ (b,a,b)
(b,0,0).

Definition 7.5. A cyclic sequence of length n on an alphabet A is an equivalence class of linear
sequences with respect to the relation ~.

Proposition 7.6. The number T'(n,r) of cyclic sequences of of length n on an alphabet of size

T s
1
T = — d
(1) == 3" 6(n/a)r
dln
Proof. A period of a cyclic sequence (ay,...,a,) is a minimal number k € {1,2,...,n} such that
(a1y...,an) = (@14k,...,an,0a1,...0a;) (equal as linear sequences). Note that the period of a

sequence is a divisor of the the sequence’s length.
Let M (d,r) be the number of cyclic sequences of of length d and period exactly d. It is easy

to see that
=Y " dM(d,r).
dn
The Mobius inversion formula implies

(4) nM(n,r)= Z,u(d/n) rd.
dln

We have
T(n,r)=>_ M(d,r).

dln
We combine this identity with (4) and obtain

T(n,r) =3 é S uld' jdy ot

dn  d'|d

. . . 17
(here we intoduce a new summation variable d” =

:Zrd’ Z ﬁu(d//)

&'|n |

&)

Now we use the identity

L dn/d)
d% W'u(d )= n/d

and arrive at

T(n,r) = §|: rd % —(b(nn/j )
d'|n

:% S bn/d) .

d'|n



This finishes the proof.
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